POLITÉCNICA

Microindentation characterization of polymers and polymer based nanocomposites

V. Lorenzo

INDUSTRIALES ETSII | UPM

- ICTP (CSIC)
 - Prof. J.M. Pereña
 - Prof. R. Benavente
 - Prof. E. Pérez
 - Prof. M.L. Cerrada
 - Prof. J.M. Gómez Elvira
 - Dr. J. Arranz

- ETSII (UPM)
 - Prof. J. Martínez
 - Prof. De la Orden
 - Prof. G. Pinto
 - Prof. V. Lorenzo

and all the postdoc, students and technicians that have collaborated with us.

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

- DEFINITION: a measure of the resistance to permanent surface deformation or damage (Ashby, N.A.: "The factor of hardness in metals", N.Z. Engng., 6: 33-34, 1951)
 - Local character of measurement
 - What is the meaning of surface damage?
- METHODS OF TESTING:
 - Scratching
 - Static indentation
 - Dynamic indentation

- ...

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

- Static penetration test
- Diamond square based pyramidal indentor (angle between the faces: 136°)
 - Diamond: indentor remains undeformed during the test
 - Pyramidal: geometric similarity of indentations \Rightarrow hardness is load independent
 - 136°: HV \approx HB if HB < 600

- Average pressure on the lateral surface of the residual indentation (Martens, 1912)
- HYP.: the geometries of indentor and indentation are similar $\ \Rightarrow$
 - h = d/7 and $S_{lat} = d^2/(2.\sin 68^\circ)$
 - d: diagonal of the base of the residual imprint
 - h: indentation depth; S_{lat}: contact area
 - $HV = 2.sen 68^{\circ} P/d^{2}$

HV: Vickers hardness; P: load

• MICROHARDNESS: hardness measured after applying small loads (grams) \Rightarrow diagonal of the residual indentation: μ m

Stress distribution under the indentor

- Classical results and FEM calculations:
 - Plastics stresses are confined to a hemispherical region with radius R ≈1,5d≈10h
- Some practical considerations:
 - Minimal distance between indentations and between indentations and edges
 - Minimal thickness of films
 - A very small quantity of material is sampled (ng)

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

Relationships between MH and other mechanical properties

V. Lorenzo et al.: Die Ang. Makromol. Chem., 172 (1989) 25-35

- V. Lorenzo et al.: J. Mater. Sci. Let., 8 (1989) 1455-1457
- J. Arranz et al.: Polymer, 46 (2005) 12287-12297
- Palza, H. et al.: Macromol. Chem. Phys., 209 (2008) 2259-2267

V.Lorenzo et al.: communication to EPF2011, Granada, 26th June-1st July

Relationships between MH and other mechanical properties

V. Lorenzo et al.: Die Ang. Makromol. Chem., 172 (1989) 25-35

- V. Lorenzo et al: J. Mater. Sci. Let., 8 (1989) 1455-1457
- G. Zamfirova et al.: J. Appl. Polym. Sci., 88 (2003) 1794-1798
- J. Arranz et al.: Polymer, 46 (2005) 12287-12297

Palza, H. et al.: Macromol. Chem. Phys., 209 (2008) 2259-2267

V.Lorenzo et al.: communication to EPF2011, Granada, 26th June-1st July

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

DSI: Depth Sensing Indentation

- 1980's: continuous measurements of load and indentation depth
- Very small loads (mN) \Rightarrow resolution: μ N
- Very small indentation depths (tenths of μm) \Rightarrow resolution: nm
- Berkovich indenter

Fischer Cripps, A.: 'Nanoindentation', Springer (2004)

Results of DSI tests

- Hardness under load
- Creep
- Elastic modulus
- Instantaneous elastic recovery
- Delayed elastic recovery
- Deformation energy
- Recoverable energy
- ...
- And, of course, hardness

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

Creep and indentation modulus

Creep and indentation modulus

Creep and indentation modulus

PLA: creep and viscoelastic corrections

Geometry of the residual indentations on polymers

Elastic recovery of hybrid coatings

C. Acebo et al.: Polymer, 55 (2014) 5028

C. Acebo et al.: to be published

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

- Microindentation "averages" the properties of some μm^3 of the material around the indentor.
- Microindentation and heterogeneity of the specimen:
 - Characteristic length of heterogeneities > d \Rightarrow MH = f(x, y)
 - Information about distribution of phases
 - Characterization of phases
 - Characteristic length of heterogeneities $\langle d \Rightarrow MH$ is not a function of the position
 - Bulk properties of the material

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

Microhardness and crystallinity of PE

- It is not possible to obtain a 100% crystalline or amorphous PE sample.
 - Length of crystallites < d
 ⇒ MH is not a function of the position.
 - MH is an increasing function of crystallinity level
 - Information about deformation mechanism

V. Lorenzo et al.: Die Ang. Makromol. Chem., 172 (1989) 25-35

DSI in mPP-1Hept copolymers

A. García-Peñas et al.: Eur. Polym. J. 64 (2015) 52-61

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

- Blends of miscible A and B polymers:homogeneous at d scale \Rightarrow MH = f(%A)
- Blends of inmiscible A and B polymers: separated domains of A and B
 - If %A << %B ⇒ characteristic length of A domains < d ⇒ MH is a continuous function of %A
 - Continuity of MH(%A) ⇒ miscibility
 - If %A is comparable con %B:
 - Characteristic length of A domains < d
 - Characteristic length of A domains > d
 - MH is a function of the position
 - Characterization of individual phases

Microhardness of blends of PEO with iPMMA

V. Lorenzo et al.: J. Mater. Sci. Lett., 9 (1990) 1011-1013

Microhardness of blends of polyolefins and LCP's

J. Arranz et al.: J. Membr. Sci. 377 (2011) 141–150

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

Microhardness and physical ageing

- A Tg: liquid
 - Cooperative movement of chains
- Tg B: glass
 - Movements of local groups
- B C: physical ageing
 - Densification:
 - Local free volume fluctuations
 - Correlation length < 10⁻¹ µm

Physical ageing of LCP's and SMP's as revealed by MH tests

A. Ormazábal et al. In "Nanostructured and Non-Crystalline Materials", World Scientific, Singapore (1995) 202-206

V. Lorenzo et al.: Materials and Design 30 (2009) 2431–2434

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymeric systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

 Composites are multiphasic materials: fillers dimesions ~ some tens of µm ⇒ characteristic dimensions of heterogeneities > d ⇒ MH is position function ⇒ MH is not an adequate tool for characterizing composite materials

But it can be used for:

- Characterizing matrix and fillers.
- Characterizing interphases.

- Hardness and hardness measurement
 - Vickers hardness
 - Relationships between hardness and other mechanical properties of polymers
 - DSI
 - Microindentation and viscoleasticity
- Microhardness of heterogeneous polymer systems
 - Microhardness of semycrystalline polymers
 - Microhardness of blends
 - Microhardness and physical ageing
 - Microhardness of PMC's
 - Microhardness of PMnC's

- Aglommerated fillers:
 - characteristic length of heterogeneities > d \Rightarrow MH is a function of position
- If the fillers are well dispersed:
 - characteristic length of heterogeneities $< d \Rightarrow MH = f(% filler)$ ⇒ information about the reinforcement effect of the filler.

PC-clay nanocomposites obtained by extrusion moulding

V. Lorenzo et al.: Eur. Polym. J. 55 (2014) 1-8

Other heterogeneous polymeric materials

- Characterization of coatings
- Multi-layer extrusion
- Skin-core structures in injection molded polymers
- Composition gradients
- ...

- Microindentation is an adequate tool for exploring structure of polymeric materials
- The volume of material that is deformed in hardness test is around d³
- The information that can be obtained from a hardness test depends on the characteristic length of the heterogeneities of the sample, I:
 - If I < d, bulk properties of the material
 - If I > d, local character information

Thank you for your kind attention