Modern Bainitic Steels for Automotive Applications

S. Allain, A. Perlade, Arcelormittal Maizières Research SA
with the inputs from RFCS DUCTAFORM Project

Why developing Advanced High Strength Steels (AHSS) for automotive sector?

- Two major & contradictory drivers for the use of newer steels in the automotive industry
 - **Fuel efficiency / CO₂ emission reduction**
 - Steep increase in the pressure on OEM to comply with new regional regulations
 - Function of weight of steel parts, controlled by gauge and design
 - **Increase or maintain at least safety performances**
 - Determined by the energy absorbing capacity (strength and residual ductility after forming) or anti-intrusion capacity (strength)

→ but, need to preserve the feasibility of the parts (formability)
Hopefully, steel manufacturing offers a large range of opportunities (achievable tensile properties).
Variety of achievable tensile properties thanks to specific microstructure designs

- **Bainite** appears as a key component in most of industrial products for automotive sector to tune tensile strength / elongation balances of steels
 - either thanks to the introduction of bainite as a component in multi-phase steels (FB, DP, TRIP)
 - or as main phase (CP)

- Properties of steels with bainitic matrix can be also tune playing with various strengthening mechanisms
 - Lath size
 - Dislocation density
 - Precipitation
 - Martensite volume fraction
But others properties are essential for car makers

- Ductility of cut-edges (stretch-flangeability)

- Fatigue (often related to UTS)

- Welding (about 3000 spot welds in a car) → related to chemical composition

Wheel closure made of HR DP600 (VeraStyle® brevetée par Hayes Lemmerz International)

S. Sadagopan, D. Urban,
Bainite can help to optimize these key IUP (often related to sensitivity to damaging mechanisms)

- From DP to fully bainitic
 - UEI decreases & HE increases (for a given strength level)
 - Related to a decrease in the hardness contrast between phases
Certain parts & designs need more!

- Highly microalloyed FB enables to reach new « strength-formability » compromise for HR products
 - Recent but commercial grades now by AM (CP800) and some competitors (Nanohiten JFE/TKS)
Thus, “modern” bainitic in steels are nowadays widely used by carmakers

- Partially bainitic (FB, CP800, CP1000) or fully bainitic steels (M800) are now commercial products for automotive making
 - Chassis applications (mainly HR) thanks to high YS and high HE
 - Anti-intrusion part in BIWS (CR/HR) thanks to high YS
Carbide-free bainitic steels can be an alternative option for the development of both HR and CR solutions

- Also called TRIP with bainitic matrix, TBF (Kobe), SB-TRIP (Posco)

- Main interests
 - Can be declined in HR and CR products
 - Permitted to reach high strengths (no soft phases), high elongation (TRIP effect) and high resistance to damage (lath structures, reduced hardness contrast)

- Recent participation of AM to a RFCS project (finished last year) led by CENIM dedicated partially to the development of this metallurgy for CR and annealed products for automotive application

NB: Nano-Bainitic steels correspond to the same concept pushed to the limits in term of carbon content

J.C. Hell et al.

0.3C2.5Mn1.5Si0.8Cr - Bainite transformation
Ms+50 °C
YS = 780 MPa, UTS = 1400 MPa, UE% = 14%, E = 20%
DUCTAFORM: examples of studied chemical compositions

- In the frame of the DUCTAFORM project, choice of chemical composition made by numerical alloy design (adaptation of hardenability and T0’ line criterion playing with Mn and Cr level)
 - Mn substitution by Cu/Ni to avoid band structure and for recycling issues
- Expectations from literature:
 - The higher C and gammagene elements the higher the tensile performance
- Some examples of studied compositions:

<table>
<thead>
<tr>
<th>Heat</th>
<th>Composition</th>
<th>C</th>
<th>M</th>
<th>Si</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>Target</td>
<td>0.15</td>
<td>2.00</td>
<td>1.50</td>
<td>0.60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR2</td>
<td>Target</td>
<td>0.20</td>
<td>2.00</td>
<td>1.50</td>
<td>0.60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR3</td>
<td>Target</td>
<td>0.25</td>
<td>2.00</td>
<td>1.50</td>
<td>0.60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR5</td>
<td>Target</td>
<td>0.20</td>
<td>1.50</td>
<td>1.50</td>
<td>0.60</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>CR6</td>
<td>Target</td>
<td>0.20</td>
<td>1.50</td>
<td>1.50</td>
<td>0.60</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CR7</td>
<td>Target</td>
<td>0.30</td>
<td>1.50</td>
<td>1.50</td>
<td>0.60</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
DUCTAFORM: Optimization of bainitic transformation

- Bainitic transformation conditions have been optimized (temperature and durations) to reach stasis
- BHD > actual industrial capability except for alloy CR5
- Expected microstructures reached
 - No polygonal ferrite
 - Various morphology of Bainite and MA components

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Soaking Temperature (°C)</th>
<th>Soaking Duration (s)</th>
<th>BHT (°C)</th>
<th>BHD (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>890</td>
<td>400</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>300,350,400</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>350,400</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR5</td>
<td>300,350,400</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR6</td>
<td>300,350,400</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR7</td>
<td>300,350,400</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data and micrographs from CENIM
DUCTAFORM: Mechanical properties (tensile, HE and Bending)

<table>
<thead>
<tr>
<th>Alloys</th>
<th>BHT (°C)</th>
<th>YS (MPa)</th>
<th>UTS (MPa)</th>
<th>Uel (%)</th>
<th>TEI (%)</th>
<th>RA (%)</th>
<th>HE (%)</th>
<th>Bending (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>400</td>
<td>853</td>
<td>1146</td>
<td>7.9</td>
<td>15.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1106</td>
<td>1394</td>
<td>4.8</td>
<td>11.9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>350</td>
<td>1077</td>
<td>1319</td>
<td>4.5</td>
<td>11.6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>822</td>
<td>1232</td>
<td>8.5</td>
<td>15.5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>350</td>
<td>1114</td>
<td>1445</td>
<td>5.9</td>
<td>12.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>762</td>
<td>1341</td>
<td>10.2</td>
<td>16.0</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR5</td>
<td>300</td>
<td>933</td>
<td>1427</td>
<td>5.3</td>
<td>12.6</td>
<td></td>
<td>45.2</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>1020</td>
<td>1395</td>
<td>5.0</td>
<td>13.0</td>
<td>64.7</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>762</td>
<td>1218</td>
<td>9.4</td>
<td>16.6</td>
<td>37.5</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CR6</td>
<td>300</td>
<td>976</td>
<td>1380</td>
<td>5.3</td>
<td>12.1</td>
<td>53.0</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>992</td>
<td>1349</td>
<td>6.1</td>
<td>13.8</td>
<td>54.5</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>750</td>
<td>1303</td>
<td>7.4</td>
<td>12.4</td>
<td>17.3</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>CR7</td>
<td>300</td>
<td>1093</td>
<td>1557</td>
<td>4.8</td>
<td>11.4</td>
<td>44.6</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>985</td>
<td>1412</td>
<td>7.4</td>
<td>14.3</td>
<td>30.3</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>781</td>
<td>1526</td>
<td>4.7</td>
<td>4.7</td>
<td>0.0</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

> 1000 MPa > 11 % > 30 %
DUCTAFORM: Optimization of properties
– Effect of bainitic holding temperature

- Confirmation that tensile properties of CFB can be tuned thanks to BHT
 - Change in work-hardening mechanisms as a function of microstructure
 - 400°C: 79% bainite / 14% RA / 7% M → TRIP effect
 - 300°C 79% bainite + TM / 9% RA / 12% M → composite effect
 - 350°C: 84% bainite + TM / 8% RA / 8% M → composite effect
 - Evolution in lath morphology and thickness / misorientation profile

Data and micrographs from CENIM

TRIP effect

« DP » effect
DUCTAFORM: Strength / Formability performances vs. traditional VHSS
Active international competition in this particular field

- Very active research field in both industrial and university laboratories
 - Major steelmakers as Kobe steel, Voestalpine, Thyssen-Krupps or Arcelormittal involved (Patent activities and corporate communication)
 - The first derived products are almost available in the market (TBF 1470 / TBF 980 from Kobe)

- Numerous academic teams
 - Cambridge University – England
 - Postech – Corea
 - CENIM-CSIC – Spain
 - Shinshu University – Japan
 - LEM3 Metz university – France
 - Mc Master University – Canada
 - Deakin university – Australia
 - …
Conclusions and perspectives

- « Modern » bainitic steels are already and massively used in automotive sector (chassis and BIWS application)
 - Steelmakers has developed new generation of microalloyed bainitic steels (already commercial) to improve the HE/formability performances

- Carbide-free bainitic steels appears to be another potential solutions for HR and CR products
 - Two RFCS projects led by CENIM-CSIC with the collaboration of AM has permitted to confirm the interest of such metallurgy for automotive applications
 - Permitting to improve simultaneously formability, strength and sensitivity to damaging mechanisms (toughness, HE, …) compared to traditional VHSS

- All the details will be issued in the final DUCTAFORM report (available soon in EU bookshop)